Neuroprotective Properties of the Coffee Component Eicosanoyl-5-hydroxytryptamide Assessed in vitro

Kristen L. Huber1, Michael Voronkov1, Miles Shen2, Sherry Zhang2, José R. Fernández1, Karl Rouzard1, Corey Webb1, Jason Healy1, Maxwell Stock1, Eduardo Pérez1, Jeffry B. Stock1,2
1Sigma Biosciences, 133 Wall Street, Princeton, NJ; 2Princeton University, Department of Molecular Biology, Princeton, NJ

Abstract

Coffee is a complex mixture of more than eight hundred compounds with a variety of health benefits including reducing the risk of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. A coffee compound, unrelated to caffeine, called eicosanoyl-5-hydroxytryptamide has been identified as a regulator of the major serine/threonine phosphatase in the brain, protein phosphatase 2A (PP2A) in diseased tissue. PP2A exhibits reduced activity1-3 and methylation of its carboxy-terminal tail. Previous reports indicate eicosanoyl-5-hydroxytryptamide (EHT) is able to protect PP2A methylation state and re-instate enzymatic activity in addition to improving cognitive and motor function in animal models1,3-7. In order to further understand the role of EHT in neuroprotection we evaluated its ability to combat oxidative injury, structural damage and chemical toxicity in neuronal cell cultures. Utilizing lipid peroxidation as a marker for oxidative injury, we directly measured the formation of lipid hydroperoxides in the presence and absence of EHT. This colorimetric assay reports on the redox reaction between iron and hydroperoxides. Our results indicate that EHT is able to significantly reduce the production of the ferric ion suggesting that it possesses antioxidant activity that may aid in maintaining membrane integrity. Next we studied EHT’s potential to reinforce the structural integrity of neurons. Differentiated SH-SY5Y neuroblastoma cells were treated with lysophosphatidic acid (LPA) to induce neurite retraction. Upon treatment with EHT, an increase in neurite length was observed suggesting protection from LPA. Lastly, the neuroprotection of SH-SY5Y neuroblastoma cells against the chemical neurotoxin MPTP was evaluated. Treatments with EHT resulted in dose-dependent neuroprotection with an EC50 of approximately 100 nM.

Significance of PP2A and its Methylation State

PP2A is a global cellular regulator that controls processes ranging from gene expression and development to morphogenesis and metabolism. The PP2A holoenzyme is formed by the association of its scaffolding A-subunit, catalytic C-subunit and one of a variety of different regulatory B subunits. The S-adenosylmethionine-dependent methylation of the C-terminal Leu306 of the catalytic subunit of the PP2A-AC heterodimer is catalyzed by the leucine carboxyl methyl transferase (LCMT). This post-translational modification is reversed by a PP2A-specific methyltransferase, PME. In the brain, PP2A has been estimated to be responsible for approximately 70% of the total phospho-Ser/Thr protein phosphatase activity with one of its main substrates being the microtubule associated protein Tau. PP2A’s requirement for S-adenosylmethionine closely links its methylation system to the one-carbon metabolism system within the cell. A pathway that is altered in Parkinson’s and Alzheimer’s disease reflected in the observed decrease in PP2A activity4-6 and methylation of its carboxy-terminal tail. It therfore seemed likely that an agent that inhibits PME activity so as to maintain the methylation status of PP2A might provide a novel anti-neurodegenerative therapeutic. EHT was identified in a screen for coffee components with this activity and has been shown to have neuroprotective efficacy in vivo in rodent models for neurodegenerative disease1,5-7. Here we demonstrate EHT’s protective effects in various in vitro models.

EHT Provides Protection from LPA induced Neurite Retraction

Alterations in microtubule dynamics caused by hyperphosphorylation of Tau can lead to pathological consequences such as those observed in Alzheimer’s disease. Therefore we sought to determine if EHT could help maintain neurite stability. The neuroblastoma cell line, SH-SY5Y, was differentiated using 10 µM retinoic acid for 72 hours at 37°C and 5% CO2. Cells were pretreated with varying doses of EHT prior to treatment with lysophosphatidic acid (LPA). LiCl, an inhibitor of GSK-3β activation, was used as a positive control. Neuritic processes were visualized using an anti-β-tubulin primary antibody and Alexa Flour® 488 conjugated secondary antibody. Neuritic length was measured using the ImageJ plug-in NeuronJ. Data are represented as the mean ± SEM (n=9). *p < 0.001 compared with the LPA treatment group.

Antioxidant Properties of EHT Combat Lipid Peroxidation

The integrity of a cell is greatly influenced by oxidative damage of lipids. Therefore, we explored the antioxidant effects of EHT to prevent lipid peroxidation. Native low-density lipoprotein (LDL) was incubated overnight at 37°C in the presence of CuSO4. Lipids were extracted into chloroform and assessed by the formation of a colorimetric complex between ferric ions and thiocyanate which was measured at an absorbance of 500 nm. Data are represented as the mean ± SEM (n=4). *p < 0.01; **p < 0.001 compared with the +CuSO4 treatment group.

References